- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Spina, Benedetta (2)
-
Almualla, Mouza (1)
-
Bañados, Eduardo (1)
-
Becker, George_D (1)
-
Bian, Fuyan (1)
-
Bischetti, Manuela (1)
-
Bolton, James_S (1)
-
Borrow, Josh (1)
-
Bosman, Sarah_E_I (1)
-
Cain, Christopher (1)
-
Chen, Huanqing (1)
-
Davies, Frederick_B (1)
-
Davies, Rebecca_L (1)
-
D’Aloisio, Anson (1)
-
D’Odorico, Valentina (1)
-
Eilers, Anna-Christina (1)
-
Fan, Xiaohui (1)
-
Gaikwad, Prakash (1)
-
Galárraga-Espinosa, Daniela (1)
-
Garaldi, Enrico (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Cosmological simulations serve as invaluable tools for understanding the Universe. However, the technical complexity and substantial computational resources required to generate such simulations often limit their accessibility within the broader research community. Notable exceptions exist, but most are not suited for simultaneously studying the physics of galaxy formation and cosmic reionization during the first billion years of cosmic history. This is especially relevant now that a fleet of advanced observatories (e.g. James Webb Space Telescope, Nancy Grace Roman Space Telescope, SPHEREx, ELT, SKA) will soon provide an holistic picture of this defining epoch. To bridge this gap, we publicly release all simulation outputs and post-processing products generated within the thesan simulation project at www.thesan-project.com. This project focuses on the z ≥ 5.5 Universe, combining a radiation-hydrodynamics solver (arepo-rt), a well-tested galaxy formation model (IllustrisTNG) and cosmic dust physics to provide a comprehensive view of the Epoch of Reionization. The thesan suite includes 16 distinct simulations, each varying in volume, resolution, and underlying physical models. This paper outlines the unique features of these new simulations, the production and detailed format of the wide range of derived data products, and the process for data retrieval. Finally, as a case study, we compare our simulation data with a number of recent observations from the James Webb Space Telescope, affirming the accuracy and applicability of thesan. The examples also serve as prototypes for how to utilize the released data set to perform comparisons between predictions and observations.more » « less
-
Zhu, Yongda; Becker, George_D; Bosman, Sarah_E_I; Cain, Christopher; Keating, Laura_C; Nasir, Fahad; D’Odorico, Valentina; Bañados, Eduardo; Bian, Fuyan; Bischetti, Manuela; et al (, Monthly Notices of the Royal Astronomical Society: Letters)ABSTRACT Recent quasar absorption line observations suggest that reionization may end as late as $$z \approx 5.3$$. As a means to search for large neutral hydrogen islands at $$z\ \lt\ 6$$, we revisit long dark gaps in the Ly $$\beta$$ forest in Very Large Telescope/X-Shooter and Keck/Echellette Spectrograph and Imager quasar spectra. We stack the Ly $$\alpha$$ forest corresponding to both edges of these Ly $$\beta$$ dark gaps and identify a damping wing-like extended absorption profile. The average redshift of the stacked forest is $z=5.8$. By comparing these observations with reionization simulations, we infer that such a damping wing-like feature can be naturally explained if these gaps are at least partially created by neutral islands. Conversely, simulated dark gaps lacking neutral hydrogen struggle to replicate the observed damping wing features. Furthermore, this damping wing-like profile implies that the volume-averaged neutral hydrogen fraction must be $$\langle x_{\rm H\,{\small {I}}} \rangle \ge 6.1 \pm 3.9~{{\ \rm per\ cent}}$$ at $z = 5.8$. Our results offer robust evidence that reionization extends below $z=6$.more » « less
An official website of the United States government
